
Metaphi: Non-custodial wallet with a custodial experience

May 28, 2022
www.metaphi.xyz

Abstract

We present an architecture for a chain-agnostic and non-custodial crypto wallet.

Our solution does not require users to memorize long key recovery phrases or depend

on third party HSM providers. Account recovery is facilitated via a semi-trusted third

party. Fund and token access is mediated between the dApp and the user directly. Our

design relies on thresholding based secret sharing and is similar to ‘multisig’

approaches.

http://www.metaphi.xyz

Contents

Abstract 1

Contents 2

Introduction and existing work 3
Custodial 3
Non-Custodial 3
Multisig wallets 5

Metaphi Non-Custodial Wallet Solution 6

Design 6
Distribution of Key Holders 7

User Device 7
DApp operated Smart Contract 8
Metaphi (semi trusted third-party) 10

Biometrics secured encryption key 12
Proof of non-custody 12

Features 13
Chain Agnostic 13
Account Recovery 13
Account Protection 14
Native Experiences 15
Account Syncing Between Devices 16
Universal Access & Visualization 16
Wallet hierarchy 17

Open Source Metaphi SDK 18

Threat Models 18
Metaphi database is compromised or unavailable 18
Metaphi has a malicious insider 19
User device is stolen 19
Phishing Attack for Biometric Credential 20
Brute force attack 20
DApp is malicious 21

Impact Analysis 21

Conclusion 23

Introduction and existing work

Crypto wallets are available in two categories - custodial and non-custodial. In

the former, the private keys required for signing transactions are held by a trusted third

party. In the latter, the private keys are stored locally on the user’s device, generally

encrypted at rest, and recoverable from a 16 word phrase which maps to the 32 byte

private key. These two approaches affect three key user facing aspects of wallets;

compliance requirements, security and UX.

Custodial

Custodial wallets provide the simplest sign-in experience for non-crypto native

users via familiar Web2 based flows. They have proved to be the easiest way to

on-ramp users into the crypto space and also allow for simple developer integrations.

There exist several of these in the market, such as Coinbase, Venly and Robinhood.

However, custodians have to comply with stringent KYC and AML laws which requires a

multi-step initial sign up flow. Also, hosted wallets provide a singular target for attackers

looking to exploit security flaws. Custodian wallets in the past have a history of having

funds stolen 12[5].

Non-Custodial

Non-custodial wallets are used by sophisticated, crypto native users. These are

generally available as a browser extension, the most popular being Metamask. While

2 How DOJ Tracked Down the Bitcoin Stolen in Bitfinex Hack | Time
1 The $800 million Bitcoin wallet no one wants to touch - Decrypt

https://time.com/6146749/cryptocurrency-laundering-bitfinex-hack/
https://decrypt.co/19648/the-800-million-bitcoin-wallet-no-one-wants-to-touch

most DApps have integrations with Metamask, we have found that non-crypto native

users find Metamask intimidating, resulting in significant user drop off.

Some wallets delegate signing to a third party cloud provider’s KMS solution or a

trusted execution environment (TEE). Keys are held in a HSM, which themselves are

secured in the provider’s data center. While delegation of signing to a cloud provider

absolves the wallet provider from holding the private keys, they still need to manage

their interactions with said provider, leaving open the malicious insider attack vector. All

cloud providers offering KMS solutions today use the same vendor (Marvell) to source

their HSMs3. This makes such wallets highly susceptible to supply chain attacks.

The idea of using threshold based secret sharing to manage private keys is not

novel. Some solutions exist where one of the shares is stored on a user device but the

other two shares are distributed in a decentralized network amongst a set of validator

nodes operated by well known crypto native entities4 and downloaded to a secondary

device, which could be a phone or a desktop.

In contrast, our protocol is simpler and does not require a set of trusted node

operators. Trustless operations are necessary to mitigate insider risk. Moreover, instead

of increasing user burden by requiring them to have a secondary device or

remembering answers to secret questions, we give them the option of storing a part of

the secret with a semi-trusted third party.

4 List of Node Operators | Documentation
3 (38) Risks in Cryptography in the Cloud | LinkedIn

https://docs.tor.us/key-infrastructure/node-operators
https://www.linkedin.com/pulse/risks-cryptography-cloud-bruno-pairault/

Multisig wallets

Multisig is not a native concept in Ethereum and multisig wallets are implemented

as smart contracts5. Several quality implementations exist and are a good use case for

securing large sums of cryptocurrencies for users desiring strong security. However,

multisig wallets are inappropriate for many use cases, especially DApps that require

frequent transactions such as gaming.

Multisig wallets use ECDSA based threshold signing, where m of n signatures

are required for a transaction to be processed. Even though significant work has been

done improving these signing algorithms, they are still quite slow. Moreover, the runtime

of these algorithms increases linearly with the number of participants.

One of the fastest algorithms6 is benchmarked at O(100ms) with just two

participants on an implementation that does not take into account network round trip

times and latency. For applications that require frequent signing, in real world

conditions, this will result in degraded user experience. Liveness is another issue, if one

of the signing keys is on another device, both will need to be available for signing.

6 Gennaro, R. and Goldfeder, S. Fast Multiparty Threshold ECDSA with Fast Trustless Setup,
Crypto 2019.

5 Overview - Gnosis Safe (gnosis-safe.io)

https://eprint.iacr.org/2019/114.pdf
https://eprint.iacr.org/2019/114.pdf
https://gnosis-safe.io/

Metaphi Non-Custodial Wallet Solution

Link: Flowchart Maker & Online Diagram Software

Design

When a user creates a Metaphi wallet, we generate the public/private key pair

locally on their device. Verifiable secret sharing (VSS)7 is used to create secrets from

that private key. These secrets are then encrypted using a user-provided pin and

7 Feldman, Paul (1987). "A practical scheme for non-interactive verifiable secret
sharing". 28th Annual Symposium on Foundations of Computer Science (SFCS 1987):
427–438.

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1#G1bhOTUtaRYV6l2y7eQlZsmk5L5m-IzVkI

distributed to several entities described in the section below. In subsequent sections, we

describe how these secrets are managed and secured against adversaries.

Metaphi pegs the wallet address and key retrieval methodology to a single piece

of user information, which is customizable based on the preference of the dApp. The

available and planned methods are:

● User Email

● User Phone Number (planned)

● ENS aka Ethereum Name Service (planned)

When the user wants to retrieve their private keys for signing transactions, they

will have to verify their information, which will allow them to retrieve their secrets. Finally,

they will use their pin to decrypt the secrets allowing a complete reconstruction of the

private key.

Distribution of Key Holders

There are three holders of the generated shares. The three stakeholders

represent each involved party in an authorized transaction.

User Device

The user device is used for two key functions

● Stores part of the secret share

● Encrypt all shares, with a biometric-protected symmetric key. This is described in

detail below.

The reconstruction of the private key always happens on the user-device itself,

thereby establishing the non-custodial nature of the wallet. To ensure this, all keys are

encrypted with the users’ symmetric key, protected by biometric credentials at a

top-level.

DApp operated Smart Contract

This is a smart contract deployed on a public blockchain, that stores secret

shares for the DApp’s users. The share present on the chain is encrypted twice, once

using the user's biometric credential-based encryption key, and then again by the

DApp’s encryption key.

The purpose of storing it on-chain is to provide high availability for the secret managed

by the DApp. Therefore, even if Metaphi is unavailable, the user can continue

interacting with the DApp.

A strawman implementation of the smart contract storing the secret is as follows:

```solidity

// SPDX-License-Identifier: LGPL-3.0-or-later

contract MKMS {

address internal deployer;

mapping (address => Secret) internal addressToSecret;



mapping (address => uint256) internal addressToLastAccessTime;

constructor()

{

deployer = msg.sender;

}

function addAddress(address requestor, Secret secret)

external

{

require(deployer == msg.sender);

addressToSecret[requestor] = secret;

}

function secret(address requestor)

external

payable

returns (Secret memory _secret)

{

addressToLastAccessTime[requestor] = block.timestamp;

return addressToSecret[requestor];

}

}



```

The contract solves two purposes:

● Allows for public auditability and access trails for the dApp’s secret share piece

since all interactions with the smart contract is necessarily logged with a

transaction hash available on a block scanner.

● Allows dApp to host the users’ secret share without accountability in a crypto

native and decentralized manner.

When the user first interacts with the DApp and successfully authenticates

themself, the DApp will fetch the secret from the contract, decrypt it using its own

encryption key and pass it on to the user. That secret is then further decrypted using the

users symmetric key. Combined with the share on the user’s own device, their private

key can then be reconstructed locally. Note that at no point is Metaphi's involvement

required for normal operations.

Access to this on-chain contract can be done via a dockerized service, which

could have automatic key management and rotation built in, simplifying operational

overhead for the DApp.

Metaphi (semi trusted third-party)

Metaphi Database stores the mapping of the secret shares based on

● chainId

● dApp

● UserId (described above)

The secret share is encrypted twice

● Biometric-credential protected key from the user

● Metaphi’s Cloud KMS encryption

Metaphi DB only acts as an account recovery mechanism, and in the ideal

scenario, this share is never used to generate private keys.

Link: Flowchart Maker & Online Diagram Software

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1#G1AlKMfeJljCK7FrzwefkVQQfG_ESDOPRA

Biometrics secured encryption key

All shares are encrypted by a user-level, non device-specific key. This is intended

to be a biometric-based key or simple pin protected by device-based biometrics.

This is a symmetric key which means the same key is used to encrypt and

decrypt the shares. Since this key never leaves the users’ device, it can be ensured that

the reconstructing of the encrypted private key shards can only be possible on the

users’ device. As the key is non-device specific, it may be reconstructed in the event the

original user device is stolen.

Browser

Creation of the symmetric key for web apps can be done easily using a hash of a

user provided pin and their email address. This can be further secured using a 2FA

device like a security key.

Mobile

For mobile devices, this approach works in a similar manner, with the key being

secured using techniques like FaceID or fingerprinting.

Proof of non-custody

Which combination of parties can regenerate the secret key?

Party 1 Party 2

User Device Metaphi Yes

User Device dApp Yes

Metaphi dApp No.

User biometric-credential is

missing

The above truth table demonstrates that the Metaphi wallet is completely

non-custodial and ensures that the user is always the only owner of the reconstructed

private key. Despite the key shards being distributed across multiple stakeholders,

without the user’s biometric-credential, the shards would be useless.

Features

Chain Agnostic

Our approach can work across arbitrary L1s and L2s, as long as they support the

smart contract functionality our protocol requires.

Account Recovery

Only 2 out of 3 shares are required to regenerate the private key for the user.

Incase of loss of the users’ key, Metaphi provides access to the backup share.

The backup share is protected in three ways

● Encrypted by users’ biometric credential generated key

● Encrypted by Metaphi’s Cloud KMS

● Whitelisting of domains which can request for Metaphi’s share

Note that while this scheme can be easily extended to more than 3 shares, we believe a

simpler solution is warranted in the shorter term.

Account Protection

Accounts are protected by the fact that there are three key-holders, and multiple

levels of encryption at each level. The table below outlines the lines of defense for each:

User Device Native Device Protection (Device lock, screen lock, app lock)

User Biometric based symmetric encryption

Limited persistence for generated private key via scoping it's

lifetime to an active session.

dApp Contract User Biometric based symmetric encryption

Auditable, access is publicly trackable

Contract level access to information to contract deployer

(dApp);

Since the information is public, data could still be downloaded

and read, however, this condition adds an additional deterrent

Encryption layer (optional); Stored shares can be encrypted

via the dApp itself and decrypted in a backend service, before

being passed to the user

Whitelisting of domains (optional); If the dApp chooses to

host a backend service, the access to contract credentials

can be controlled by whitelisting domains from which request

to access this contract can be made

Metaphi Database User Biometric based symmetric encryption

dApp domain whitelisting; Metaphi only allows access

requests from pre-configured whitelisted domains

Cloud-based KMS to encrypt hosted shares

Native Experiences

By providing an open-source SDK to enable this mechanism, we allow dApps to

embed a native wallet experience in their apps. The third-party, described in this paper,

as the Metaphi database, could be any third party, including the dApp itself. However, in

this case, the dApp would carry greater liability owning 2 out of 3 shares. However,

given the mechanism uses a top-level encryption sourced from the users’ biometric,

even if the dApp owns 2 out of 3 shares, they will not be able to regenerate the secret

key by themselves without the user’s authorization.

Account Syncing Between Devices

For example, the user uses a dApp both on the browser as well as the phone. If

the user first logged-in to the app using the browser, the secret fragment will continue to

live on the browser. To allow the user to authenticate via their phone, the shards from

the dApp and Metaphi will be used to reconstruct the private key on the user device.

In a future development, we could consider more than 3 shards, to allow for the

user to use Metaphi only as a recovery mechanism and provide the ability to host

shards on multiple user devices.

Universal Access & Visualization

Since Metaphi hosts the wallet addresses’ and parts of the share for all users,

Metaphi is able to provide a visualization of all assets owned, across all dApps to the

user directly.

Further along, we can also enable universal signing for the user, from a

free-standing Metaphi wallet itself, without a dApp, since the User Device and Metaphi

are enough to be able to regenerate the secret keys for all dApps.

Wallet hierarchy

Since our scheme is dApp specific, it has the potential of increasing user

cognitive overhead if they interact with multiple dApps and want to either move funds

around from one wallet to another or want a unified view of all their wallets across

multiple dApps. To address this, we propose a wallet hierarchy, where a top level wallet

“owns” several dApp specific wallets. Each of these dApp specific wallets can

themselves own multiple sub-wallets, enabling an arbitrarily nested hierarchy. The

specifics of how this hierarchy is materialized and managed is an implementation detail

we omit for brevity.

Link: Flowchart Maker & Online Diagram Software

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1#G1gB6pcd5NLLUeQ7WUJKoSjcTxkuT8-6qi

Open Source Metaphi SDK

We are building the system described above, into SDKs that can be used by

dApps across different platforms.

The core functionality provided by the SDK is:

1. Wallet Creation

a. Generating a wallet address.

b. Generating secret shares.

c. Retrieving users’ biometric credential.

d. Generating symmetric encryption key from retrieved biometric credential.

e. Encrypting secret shares with this symmetric key.

f. Uploading secret shares to device, dApp contract and Metaphi.

2. Signing Transactions

a. Retrieving users’ biometric credential.

b. Generating symmetric encryption key from retrieved biometric credential.

c. Recreating private key retrieved from device and dApp.

d. Persisting private key for session duration, and/or based on user setting.

Threat Models

Metaphi database is compromised or unavailable

The secret sharing protocol ensures that a single secret is useless. The secret in

the Metaphi Database is also encrypted with a symmetric key generated from the users’

biometric credentials. Also, since only 2 out of 3 keys are required to regenerate the

private key, the user will remain unaffected by a breach or an outage.

Metaphi has a malicious insider

Secrets stored in the Metaphi DB are double encrypted with the user generated

symmetric key and a cloud provider based KMS solution, backed by a FIPS compliant

HSM. So even if the insider manages to break the symmetric key encryption, the

Metaphi custodial share remains protected with a key stored in a HSM, ensuring an

audit trail for investigation.

User device is stolen

All key segments are encrypted with the users’ biometric credentials which will be

hard to forge, even if the device is stolen. Even if the biometric guardrails are breached,

we have planned a relayer infrastructure to revoke user privileges on demand, which we

will detail in a future whitepaper.

For recovery, if the user reports a stolen device, using the two parts on the

Metaphi DB and the DApp Authentication contract, new secret shares can be generated

on a new device.

1. Device is locked: This secret share is protected by the device protection itself.

2. Device is unlocked

2.1 Connected to DApp

If the user is connected to the DApp, the private key on the device is open to

being compromised. This risk is the same as if a user were to leave their GMail account

open. To handle this risk, we have the revoking mechanism using the relayer in our

roadmap. The revoking mechanism will work via the DApp Auth Contract and

MetaphiDB where all signing credentials from the compromised address will be

rejected. The persistence of the generated private key on the device is limited to the

session time of connection. This ensures that the attack window is narrowed.

2.2 Not connected to DApp

If the user is not connected to the DApp, the malicious actor would still have

access to the encrypted secret share. This is protected by the biometric-based

symmetric encryption key.

Phishing Attack for Biometric Credential

If the user is phished for their biometric or pin and the symmetric public key is

regenerated by an authorized actor, they would still need to authenticate against

Metaphi and the dApp to fetch at least one other share.

Brute force attack

Brute-forcing the pin is made more difficult by the fact that most anticipated use

cases for the Metaphi wallet are not expected to last beyond 90 minutes.

DApp is malicious

Metaphi aided wallets have a 1-1 mapping between the DApp and the user. A

malicious DApp may only get access to the private key of the wallet that the user is

exclusively using for that DApp. Our SDK provides isolation between DApps by only

storing the signing provider for the specific DApp.

Impact Analysis

With the dual layers of encryption, spread across three stakeholders, even in the

worst case where 2 out of 3 stakeholders are compromised, the impact is always limited

to a single user, as described in the table below.

Compromised

Secret 1

Compromised

Secret 2

Impact

User Device

(all regenerated

private keys are

compromised)

Single user, all dApp accounts

compromised

Remediation: Revoking Mechanism

from dApps

User Device

Metaphi DB,

accessed by

Single user, single dApp account

compromised

(biometric key

compromised)

network

(Whitelisting

compromised)

Metaphi DB,

accessed directly

(KMS is

compromised)

(Whitelisting NA)

Single user, all accounts

compromised

Impacted users’ accounts across

single dApp are compromised

dApp Contract Metaphi DB Two layers of encryption

● KMS

● Biometric-based encryption

User Device ● Creates Auditable trail

● Described under Thread

Models: User Device is stolen

Conclusion

We describe the Metaphi wallet, a non-custodial wallet offering a custodial

experience. We described its key core pieces, their interactions and a simple proof

demonstrating the properties of our system. We analyzed the threat model and showed

that our design is robust against various attacks. We contrasted our system against

peer implementations and demonstrated the simplicity of our design. In short, the

Metaphi non-custodial wallet solution allows secure management of user’s private keys

with no impact on their autonomy.

